Определение прочности раствора в кладке

Получение достоверных механических характеристик каменной кладки, как композиционного материала, состоящего из кладочных элементов и раствора, является одной из главных задач,которую необходимо решить при обследовании каменных зданий. Проблема заключается в различии прочностных и деформационных характеристик растворов и кладочных элементов,применяемых в разные периоды возведения зданий. Каменная кладка старых зданий выполнялась главным образом из керамического кирпича на известковом или глиняном растворе. В настоящее время нет универсальной и достоверной методики по определению физико-механических характеристик таких растворов. Как следствие, статистические данные по испытаниям материалов старых кладок, в частности растворов, практически отсутствуют. Оценка прочности растворов в старых кладках является достаточно сложной и в настоящее время не решенной в полной мере задачей.

При обследовании каменных зданий и разработке проектов по их реконструкции или модернизации прочность каменной кладки определяется в соответствии с действующими нормативными документами на основании прочностных показателей кладочных элементов и раствора, установленных по стандартным методикам. Прочность кладочного раствора определяется, как правило, неразрушающими методами или испытаниями образцов, отобранных непосредственно из тела каменной кладки. Форма, метод отбора и испытаний образцов могут быть различными, однако при этом необходимо знать поправочные коэффициенты между прочностью кладочных растворов, определенных по используемым методикам, и прочностью,полученной на основании стандартных испытаний. Кроме этого во внимание следует принимать и другие факторы, влияющие на прочность кладочного раствора в процессе его длительной эксплуатации (выветривание, химическая коррозия и т.д.).

Нормативные требования к определению прочности каменной кладки

В соответствии с действующими нормами [1, 2] прочность каменной кладки можно установить на основании результатов испытаний ее отдельных составляющих (кладочных элементов и раствора).

В Еврокоде 6 [1] нормативное сопротивление сжатию каменной кладки на растворе общего назначения определяют по формуле (1):

где fk – нормативное сопротивление сжатию каменной кладки в Н/мм2;
K –константа, зависящая от вида кладочного элемента (для полнотелого керамического кирпича К=0.5);
fb – приведенное (нормализованное) сопротивление сжатию камня (блока) в направлении нагрузки в Н/мм2, определяемое согласно [3];
fm – прочность кладочного раствора при сжатии в Н/мм2 согласно[4].

Формула (1) получена на основании анализа результатов исследований по большому количеству образцов каменной кладки, подготовка и испытание которых выполнялись в соответствии с требованиями [5]. Основным недостатком формулы (1) является нестабильность константы Ксвязывающей нормативное сопротивление каменной кладки со средними значениями прочностных показателей камней и раствора.

В отечественных нормах [2] прочность кладки при сжатии определяется по эмпирической зависимости(2), предложенной Л.И. Онищиком, для различных сочетаний прочностных характеристик кладочных элементов и раствора:

где Ru, R1, R2 – пределы прочности при сжатии в МПа кладки, кладочного элемента, раствора соответственно;
γ – поправочный коэффициент, который определяется по формуле (3), если R2<0.04R1:

В случае, когда R2≥0.04R1, γ=1;
А – конструктивный коэффициент, зависящий от вида кладочного элемента и определяемый из выражения (4):

Если прочность кладочного элемента меньше установленной в стандарте, то А определяется по формуле (5):

Rub– предел прочности кладочного элемента при изгибе в МПа;
a, b, m, n – эмпирические коэффициенты, зависящие от вида кладки.

Пределы прочности камня при сжатии и изгибе определяются в соответствии с требованиями [6].

В формулах (1), (2) прочность кладочного раствора устанавливается на основании испытаний образцов, представляющих собой половины стандартных растворных балочек размерами 40×40×160мм. Очевидно, что данная методика неприемлема в случае определения прочности кладочного раствора в существующих зданиях. Для этих целей применяются неразрушающие методы или методы, основанные на испытаниях образцов раствора, отобранных непосредственно из тела кладки.

Методы оценки прочности растворных швов каменной кладки при сжатии

Отбор проб раствора из тела каменной кладки для последующих их испытаний очень трудоемок. Поэтому при определении прочности кладочного раствора в существующих конструкциях часто применяются приборы неразрушающего контроля, принцип действия которых основан на методе ударного импульса. В частности, для определения прочности раствора используется измеритель прочности бетона ИПС-МГ4.01 с энергией удара 0.16 Нм или тестовый молоток Шмидта с энергией удара 0.833Нм [7]. В зависимости от вида испытуемых материалов молотки снабжаются соответствующими шкалами измерений и специальными плунжерами. Для этих же целей применяются специальные устройства, принцип действия которых основан на вбивании в растворный шов стального острия с определенной энергией удара. Мерой прочности раствора при сжатии является глубина погружения острия в раствор с поправкой на величину сжимающих напряжений в растворном шве. Кроме того, для оценки прочности раствора может использоваться ультразвуковой метод или метод, основанный на измерении энергии при сверлении растворного шва [8].

Следует отметить, что вышеприведенные методики позволяют получить скорее качественные, чем количественные показатели прочности растворных швов. Недостатком данных методик является еще и то, что ими оцениваются прочностные показатели поверхностного слоя раствора, который в наибольшей степени подвержен деградации, при этом по толщине конструкции прочность раствора может существенно разниться.

При возведении каменных конструкций старых зданий основным вяжущим кладочных растворов была известь, иногда гипс или глина, а во второй половине XIX века цемент. Анализ химического состава растворов позволяет определить их составляющие, на основе которых можно изготовить стандартные образцы раствора и выполнить их испытание по определению прочности при изгибе и сжатии. При этом необходимо иметь в виду, что полученные результаты могут значительно отличаться от истинных значений прочности по следующим причинам:

  • при твердении образцов раствора приготовленных на основе химического состава старых растворов не учитывается технологии выполнения последних, количество воды,применяемые добавки, атмосферные воздействия во время выполнения каменной кладки, реологические явления;
  • на прочность растворов большое влияние оказывает их деградация вызванная выветриванием, химической коррозией, засолением и другими факторами, имеющими место при длительной эксплуатации каменной кладки.

В технической литературе содержится много различных предложений, касающихся методов лабораторных испытаний образцов растворов, отобранных из швов кладки. В соответствии с [9] испытываемые образцы готовятся из двух пластинок кладочного раствора квадратной формы,склеенных между собой и выровненных по контактным поверхностям гипсовым раствором (рис. 1).

Механические свойства соединительного шва должны быть близки к свойствам испытываемого раствора. В соответствии с данным методом испытаний прочность раствора при сжатии определяется по формуле (6).

где F – разрушающая нагрузка;
A=c×c – поперечное сечение;
km – коэффициент корреляции между прочностью испытанных образцов и прочностью стандартных образцов (половин балочек размерами 40×40×160мм). Коэффициенты кореляции в зависимости от размеров образцов-кубов приведены в таблице 1.

На рис. 2 показана схема испытаний кладочного раствора согласно требованиям стандартаDIN 18555-9:1999 [10]. Прочность раствора определяется по формуле (3), в которой А –поперечное сечение стального стержня. Кроме масштабного фактора, на прочность раствора в данном случае оказывает влияние эффект Баушингера, так как сжимаемый между стальными стержнями раствор работает вместе с остальной незагруженной областью образца. Коэффициент корреляции km для данного вида испытаний ориентировочно принимается равным 0.4-0.5.

Подобная методика испытаний была приведена в СН 290-64 и названа «методом инженера Сенюты» [11]. В соответствии с данной методикой из отобранного раствора готовят образцы в виде квадратных пластинок, сторона которых превышает толщину пластинки примерно в 1.5 раза.Нагрузка на образец передается через 30-40 мм металлический стержень, установленный по центру пластинки. Сторона основания или диаметр стержня должны быть примерно равны толщине растворного шва. Прочность раствора при сжатии определяется делением разрушающей нагрузки на площадь поперечного сечения стержня. Для перехода к прочности стандартных образцов результаты испытаний пластинок умножают на коэффициент корреляции 0.5.

Образцы раствора могут также иметь форму цилиндров, изготовленных из высверленных из раствора 3-4 круглых пластин диаметром 50-60мм и склеенных между собой гипсовым раствором (рис. 3).

Необходимо отметить, что объем приготовленных таким образом образцов близок к объему стандартных образцов раствора (половин балочек размерами 40×40×160мм).

Недостатком вышеперечисленных методов испытаний является сложность отбора образцов раствора и изготовление опытных образцов-цилиндров. Касается это, в первую очередь, слабых известковых растворов прочностью ниже 1.0 МПа или растворов, имеющих хорошее сцепление с камнем. В этом случае может быть использована предлагаемая авторами настоящей статьи и запатентованная за рубежом методика испытаний кладочного раствора на образцах цилиндрической формы, отобранных из тела каменной кладки. Образец выбуривается перпендикулярно плоскости кладки таким образом, что бы его сечение включало два сегмента кладочных элементов с растворным швом между ними. Испытание образцов проводится в жестких стальных обоймах внутренним диаметром, равным диаметру цилиндрического образца (рис. 4).

Прочность кладочного раствора при сжатии  fm определяется по формуле (6), в которой (d – диаметр образца, b – его длина).

Результаты собственных исследований прочности кладочных растворов

С целью сравнения прочности кладочных растворов при сжатии, полученных по различным методикам, и определения коэффициентов корреляции для перехода к прочности стандартных образцов были выполнены исследования растворов вновь возведенной кладки и кладки стен,эксплуатировавшихся более 100 лет и подлежащих разборке. В образцах растворов, отобранных из старой кладки, определялись вид и содержание вяжущего и заполнителей, объемная плотность, массовая влажность. Было установлено, что в качестве вяжущего в растворе старых кладок использовалась гидравлическая известь, объемная плотность раствора составила около1600 кг\м3. Так как раствор имел малую прочность сцепления с камнями, была возможность извлечь из каменной кладки достаточно большие его фрагменты. Впоследствии из фрагментов раствора выбуривались круги диаметром 50 мм. Часть из них была испытана на сжатие в соответствии со схемой, приведенной на рис. 2. Из остальных кружков были изготовлены образцы в виде цилиндров высотой 40-50мм (рис. 3). Кроме того из извлеченного из швов кладки раствора были изготовлены квадратные плитки с размером стороны 40 мм, из которых впоследствии готовились образцы-кубики (рис. 1). Кроме того, из кладки отбирались образцы-цилиндры диаметром 50 мм, которые включали два сегмента кирпича с растворным швом между ними(рис. 4). Отбор образцов производился без нарушения структуры раствора и его сцепления с камнями. Такие же образцы были изготовлены из раствора вновь возведенной кладки. Указанная кладка была выполнена на цементном растворе, в состав которого входили: цемент – 25%,заполнители – 75%, добавки – 0.02%. Его прочность при сжатии, определенная по стандартной методике [4], составила 16.5 МПа.

Полученные средние значения прочности кладочного раствора при сжатии с коэффициентами вариации приведены в таблице 2.

Прочность кладочных растворов, определенная на образцах, показанных на рис. 1 и 2, в таблице 2 приведена без учета коэффициентов корреляции km.

По результатам испытаний была построена гистограмма и кривые распределения плотности прочностных показателей раствора (рис. 7). Статистическая обработка полученных результатов показала, что они подчиняются логнормальному закону распределения.

Анализ результатов испытаний, приведенных в таблице 2, показывает, что прочность кладочного раствора при сжатии, полученная на различных образцах, существенно разнится.Следует отметить, что наиболее близкие к стандартным испытаниям значения прочности раствора получены для образцов, показанных на рис. 3. Наибольшую прочность раствора показали выбуренные из кладки образцы-цилиндры (рис. 4). При испытании данных образцов растворный шов так же, как и в кладке, работает в условиях трехосного сжатия, принимая во внимание его сцепление с камнем и силы трения. При этом полученная прочность раствора при сжатии для старой и новой каменных кладок была в среднем в 4.3 раза выше, чем при испытаниях, показанных на рис. 3 (1 строка таблицы 2). Прочность раствора, определенная по образцам-кубам (рис. 1) была в среднем в 1.4 раза выше, чем прочность цилиндрических образцов, приведенных на рис. 3. Следует отметить, что данные выводы являются справедливыми для раствора, отобранного из новой и старой кладки.

Значительно большая разница в прочности растворов (относительно образцов, показанных на рис. 3) наблюдалась при испытаниях по методике DIN 18555-9 (рис. 2). В данном случае прочность цементного раствора была в 1.8, а известкового в 4.3 раза выше прочности, полученной при испытании цилиндрических образцов, при этом коэффициент вариации прочности известковых растворов был самым высоким и составил 103%. Причиной этого могло быть существенное отличие в толщине извлеченных из кладки фрагментов цементного и известкового раствора. Толщина плиток цементного раствора составляла hm=10±1мм, а известкового 12-20мм. Кроме того, механизм разрушения цементного раствора был хрупким, а известкового –пластичным.

Оценка прочности касательного сцепления кладочных растворов и угла внутреннего трения

Важными характеристиками, определяющими прочностные и жесткостные свойства каменной кладки при сдвиге, являются ее начальное сопротивление сдвигу (касательное сцепление) и угол внутреннего трения в плоскости горизонтальных растворных швов.

При одновременном действии сдвигающих и сжимающих напряжений прочность кладки при срезе определяется по формуле Кулона-Мора (7):

где fv0– начальное сопротивление кладки сдвигу в плоскости растворных швов при σc =0;
σ– сжимающие напряжения, действующие перпендикулярно горизонтальным растворным швам;
– угол внутреннего трения для растворного шва.

В соответствии со стандартом [12], начальное сопротивление кладки сдвигуfv0 и угол внутреннего трения j получают на основании испытаний образцов кладки, подверженных одновременному действию сжимающих и скалывающих напряжений (рис. 6). Уровень обжатия зависит от прочности кирпича при сжатии. Например, при прочности камня большей, чем 10 МПа, значения σc принимаются равными 0.2, 0.6, и 1.0МПа, а при прочности камня ≤10 МПа σc =0.1, 0.3, 0.5 МПа.

Так как величина сжимающих напряжений σявляется переменной, это дает возможность построения графика зависимости «fv − σc » (рис. 7). Прочность на «чистый» срез fv0 устанавливается путем экстраполяции графика до ординаты σc =0.

Совершенно очевидно, что применение методики [12] для оценки прочностных характеристик кладки при сдвиге в существующих конструкциях является затруднительным. В связи с этим авторами используется разработанная ими методика, основанная на испытании цилиндрических образцов, показанных на рис. 4. Отличие данной методики от метода оценки прочности раствора при сжатии заключается в том, что плоскость горизонтальных растворных швов располагается под углом 0º<a<90º к направлению действия сжимающего усилия F (рис. 8).

Варьируя величину угла a, мы получаем возможность изменять значения сдвигающих и сжимающих напряжений, которые определяются по формулам (8, 9).

где F – разрушающая нагрузка;
d, b – соответственно диаметр и длина образца (рис. 4);
a – угол между направлением действия сжимающей нагрузки и растворным швом.

Зная величину касательных напряжений fv при разрушающей нагрузке и соответствующие ей значения сжимающих напряжений σс, можно построить график зависимости «fv− σc», по которому определить начальное сопротивление сдвигу fv0 и угол внутреннего трения j (рис. 7).

Заключение

Среди рассмотренных методов оценки прочности кладочного раствора в существующих каменных конструкциях наиболее универсальным и информативным является метод, основанный на испытаниях, выбуренных из тела кладки образцов цилиндров. С помощью данного метода можно выполнить оценку прочностных показателей кладочных растворов не только при сжатии, но и при сдвиге, а также проанализировать степень деградации раствора по толщине каменной конструкции. Для получения коэффициентов корреляции между прочностными показателями растворов, определенными по предлагаемой методике, и прочностью стандартных образцов, в настоящее время авторами выполняются обширные исследования кладочных растворов как старых, так и вновь возводимых каменных конструкций.

Литература

  1. ЕN1996-1-1:2005 Eurocode 6. Bemessung und Konstruktion von Mauerwerksbauten. Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk. 127 p.
  2. СНиП II-22-81* Каменные и армокаменные конструкции. М. : Стройиздат, 1983. 40 с.
  3. EN 772-1:2000 Prüfvervahren für Mauersteine – Teil 1: Bestimmung der Druckfestigkeit. 9 p.
  4. EN 1015-11:1999 Prüfverfahren für Mörtel für Mauerwerk – Teil 11: Bestimmung der Biegezug- und Druckfestigkeit von Festmörtel. 16 p.
  5. EN 1052-1:1998 Prüfverfahren für Mauerwerk – Teil 1: Bestimmung der Druckfestigkeit. 14 p.
  6. ГОСТ 8462-85. Материалы стеновые. Методы определения пределов прочности при сжатии и изгибе. М. : Госстрой СССР. 7 с.
  7. Белов В. В., Деркач В. Н. Экспертиза и технология усиления каменных конструкций // Инженерно-строительный журнал. 2010. No7. С. 14-20.
  8. Jasieńko J., Engel L., Kondolewicz A. Problemy konstrukcyjno-konserwatorskie w stabilizacji i ekspozycji ruin obiektów kamiennych na przykładzie Zamku „Lenno” we Wleniu // Wiadomości Konserwatorskie. 2009. No 26. Pp.12-18.
  9. Рекомендации по обследованию и оценке технического состояния крупнопанельных и каменных зданий. М. : ЦНИИСК им.В.А.Кучеренко, 1988. 57 с.
  10. DIN 18555-9:1999 Testing of mortars containing mineral binders – Part 9: Determination the compressive strength of hardened mortar. 12 p.
  11. Справочник проектировщика промышленных, жилых и общественных зданий и сооружений.Каменные и армокаменные конструкции / под ред. С.А. Семенцова, В.А. Камейко. М. : Стройиздат, 1968. 174 с.
  12. EN 1052-3:2002 Рrüfverfahren für mauerwerksbau – Тeil 3: Вestimmung der anfangsscherfestigkeit. 11р.
Выбор методов контроля прочности бетона

Выбор методов контроля прочности бетона

В последние годы популярность и доступность различных методов контроля прочности бетона и реализующих их приборов резко возросла. И несмотря на требования нормативных документов, резко ограничивающие возможность применения большинства методов для использования в ходе обследования конструкций зданий и сооружений, в том или ином объеме они применяются большинством организаций.

Содержание статьи:

  1. Классификация методов контроля прочности бетона
  2. Стоимость оборудования
  3. Правила контроля прочности бетона
  4. Исследование прочности бетона колодца различными методами
  5. Выводы и рекомендации
  6. Литература

Необходимо уточнить, что в данной статье речь идет только о прочности бетона на сжатие и далее под «прочностью» понимается именно этот параметр бетона.

Рассмотрим следующие вопросы.

  1. Какие методы определения (оценки) прочности бетона применяются и какие наиболее доступны?
  2. Каковы параметры основных применяемых методов с точки зрения стоимости оборудования, производительности и погрешности измерений?
  3. Какие методы в реальных условиях объектов обследования, с учетом сложившейся на рынке ситуации, можно применять, соблюдая требования норм?

Классификация методов контроля прочности бетона

Исследования прочности бетона должны выполняться по требованиям ГОСТ 28570 [1], 22690 [2], 17624 [3], ГОСТ Р 53231 (вышел новый ГОСТ 18105)[4], СТО [5]. Условно все применяемые методы можно разделить на 3 группы, представленные на рис. 1.

Классификация методов контроля прочности бетона
Рисунок 1. Классификация методов контроля прочности бетона

Результаты, полученные методами первой группы, являются наиболее соответствующими истинному значению прочности материала по следующим причинам. Во-первых, измеряется именно искомый параметр – усилие, соответствующее разрушению при сжатии. Во-вторых, исследуется образец материала, изъятый из тела конструкции, а не только из поверхностного слоя. В-третьих, влияние на результат измерения внешних факторов: влажность, армирование, дефекты поверхностного слоя и прочих, – можно свести к минимуму.

Однако данный подход для рядовых объектов на практике применяется крайне редко. Это обусловлено тремя основными причинами: высокая стоимость оборудования, большая трудоемкость процесса измерения и, следовательно, его себестоимость и локальное повреждение конструкций, которое в большинстве случаев заказчик не приемлет.

Подсчитаем оценочную стоимость необходимого для первого вида измерений оборудования. Учитывая, что метод выбуривания кернов по сравнению с отбором проб выпиливанием характеризуется меньшей трудоемкостью и повреждением, наносимым конструкции, рассмотрим оборудование именно для него. Рассмотрим комплект оборудования, доступного на рынке, со средним качеством и минимальными необходимыми параметрами. В минимальный комплект можно включить: перфоратор (Bosch GBH 2-26), установка алмазного сверления для отбора кернов диаметром до 100 мм (Husqvarna DMS 160A), камнерезный станок (Diam SK-600) и пресс гидравлический (ПГМ-1000МГ4). Данные сведены в таблицу 1.

Трудозатраты для выполнения измерений будут состоять из выбуривания трех кернов (согласно п.СП13-102 [6] для определения прочности одного конструктивного элемента), доставки с объекта в лабораторию (в расчет взят 1 ч), торцовки на камнерезном станке и испытания на прессе с последующей обработкой результатов.

Для всех методов контроля, указанных на рис. 1, по требованиям ГОСТов [1,2,3] необходимо до выполнения измерений (отбора проб) определить наличие и расположение арматуры (для этого использовался измеритель защитного слоя бетона ИПА-МГ4.01). Данная операция, как правило, выполняется магнитным методом по ГОСТ 22904 [7]. Эта составляющая в затраты на приборное обеспечение и трудоемкость не включена.

Подсчитаем оценочную стоимость необходимого для второго вида измерений оборудования. Расчет выполнен для метода отрыва со скалыванием, так как в отличие от методов отрыва и скалывания ребра, данный метод в отечественной практике обследования нашел наибольшее применение.

Стоимость оборудования

В минимальный комплект можно включить перфоратор (Bosch GBH 2-26) и прибор для определения прочности бетона методом отрыва со скалыванием (ПОС-50МГ4). Трудозатраты для выполнения измерения методом отрыва со скалыванием будут состоять из бурения шпура, закладки анкера и проведения измерения. Количество единичных измерений для определения прочности бетона участка конструкции должно быть не менее трех [4,6]. Данные представлены в таблице 1.

Во всех косвенных неразрушающих методах контроля прочности для реализации достаточно наличия самого прибора контроля. Трудоемкость состоит непосредственно из измерений того или иного параметра (отскок, скорость ультразвука, диаметр отпечатка и пр.) после выполнения надлежащего количества измерений.

Таблица 1. Сводные данные по методам измерения

№ по рис. 1Метод измеренияСтоимость оборудования, руб.Трудоемкость*, чел/чСтоимость испытания**, руб.
1.2Испытание кернов на прессе490000412000
2.2Отрыв со скалыванием7200015000
3.1Ультразвуковой метод660000,11500
3.2Метод упругого отскока1000000,22500
3.3Метод ударного импульса560000,21500
3.4Метод пластической деформации40000,52000

*Трудоемкость определена по всем операциям с момента начала работ на объекте, учитывая необходимость обработки поверхности и прочие вспомогательные операции, до получения первичных данных о прочности, без работ по оформлению результатов.
**Стоимость указана по результатам опроса специализированных организаций с учетом минимально необходимого по требованиям нормативных документов количества измерений и без учета дополнительных затрат.

Измерение прочности методом пластической деформации характеризуется большей трудоемкостью, так как помимо нанесения отпечатков на поверхность бетона конструкции необходимо производить измерение их диаметров и дальнейший расчет их отношения (при использовании молотка Кашкарова).

Исходя из данных, представленных в таблице 1, можно сделать вывод о том, что приборы третьей группы характеризуются очевидными преимуществами. Они обладают наименьшей трудоемкостью и, соответственно, стоимостью единичного испытания. Величина инвестиций в приобретение оборудования также минимальна по сравнению с методом 1  группы.  И сопоставима со стоимостью оборудования 2 группы. Помимо этого все косвенные методы контроля являются полностью «неразрушающими» и не наносят повреждений бетону конструкций при измерениях.

Именно эти факторы являются основной причиной большой популярности методов группы 3 у различных организаций, занимающихся обследованием и испытаниями бетона. Особенно это относится к фирмам, стремящимся минимизировать расходы на оборудование, либо «молодым» организациям, а также к организациям, основной целью которых является не качество выполненной работы.

Правила контроля прочности бетона.

Согласно п. 3.14 ГОСТ 22690 [2], «для определения прочности бетона в конструкциях предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы)». Применение методов упругого отскока, ударного импульса или пластической деформации при обследовании конструкций, бетон которых обладает параметрами, отличающимися от бетона, на котором построена градуировочная зависимость (то есть всегда), возможно только с уточнением данной зависимости. Уточнение зависимости подразумевает испытание бетона методом группы 2 или 1.

Согласно п. 3.16. ГОСТ Р 53231 (вышел новый ГОСТ 18105)[4], использование всех косвенных методов контроля (группа 3) возможно только с построением градуировочной зависимости.

Согласно п. 8.3.1 и Приложению Б СП 13-102 [6], определение прочности бетона выполняется неразрушающими методами в соответствии с ГОСТ 22690 [2], и без построения градуировочной зависимости может быть выполнено только методами отрыва со скалыванием, отрыва, скалывания ребра и по испытанию отобранных образцов.

Иными словами, применять все методы контроля прочности, входящие в группу 3 (рис. 1), без построения градуировочной зависимости НЕЛЬЗЯ, а построение зависимости ведет к неизбежному использованию методов группы 1 или 2. По результатам анализа отчетов сторонних организаций, а также общения с коллегами из различных регионов России можно утверждать, что в отечественной практике обследования указанными нормами пренебрегает большинство организаций. Почему так происходит, описано выше.

Рассмотрим, чем вызвано такое категоричное требование норм по отношению к косвенным неразрушающим методам контроля.

Во-первых, это большая неопределенность (погрешность) результатов измерения фиксируемого параметра. Помимо наличия приборной составляющей погрешности (износ пружины, низкий заряд аккумуляторов и т.п.), которая вносит определенный вклад в результирующую погрешность, превалирующую роль играют многочисленные внешние факторы [8]. К ним относятся:

  • качество обработки поверхности бетона;
  • наличие дефектов (скрытых и явных) в зоне измерения (микротрещины, поры, каверны,расслоения и т.п.);
  • включения крупного заполнителя;
  • наличие арматуры в зоне измерения;
  • повреждение поверхностного слоя (размораживание, промасливание, увлажнение, карбонизацияи другие виды коррозии);
  • сила прижатия датчика (для ультразвукового метода);
  • другие факторы.

Все перечисленные факторы в определенном сочетании имеют место всегда, а минимизация их влияния либо невозможна, либо снижает производительность измерений в разы (например, предварительная шлифовка поверхности бетона).

Во-вторых, даже при сведении к минимуму влияния внешних факторов путем тщательной подготовки и проведения исследований, а также статистической обработки результатов измерений и отбраковки их части, полученный результат не может быть использован без частной градуировочной зависимости для конкретного исследуемого бетона.

Установление градуировочной зависимости, например, для ультразвукового метода, по требованиям п. 3.4 ГОСТ 17624 [3] подразумевает испытание не менее 30 образцов кубов (15 серий по 2 куба в каждой). На большинстве объектов среднего масштаба, а также при выборочном обследовании бетонных конструкций выполнение такого количества прямых испытаний сводит к нулю необходимость применения неразрушающих методов вообще. Помимо этого, получить согласование заказчика на повреждение конструкций (неизбежное при испытаниях) в таком объеме на эксплуатируемых объектах гражданского назначения редко представляется возможным.

Необходимо отметить, что на практике, даже при соблюдении минимального количества образцов для построения градуировочной зависимости, найденная зависимость может оказаться не удовлетворяющей требованиям норм по статистическим параметрам оценки (допустимое среднеквадратическое отклонение, коэффициент вариации). Таким образом, выполненная исследовательская работа может оказаться бесполезной.

Тем не менее, применять косвенные методы неразрушающего контроля можно. Это целесообразно в следующих случаях:

  • когда нет необходимости определять прочность бетона (например, для расчета), а необходимо только оценить ее значение и использовать как один из ряда факторов, характеризующих техническое состояние конструкции (однородность, сплошность и др.), например при обследовании фундаментов по требованиям п. 7.16 ТСН 50-302 [9] и п.5.2.15 ГОСТ Р 53778 [10];
  • когда необходимо качественно выявить зоны неоднородности прочности бетона для дальнейшего применения методов групп 1 и 2 в этих зонах;
  • когда есть возможность и необходимость выполнения комплексных работ и построения частной градуировочной зависимости согласно требованиям ГОСТ.

Учитывая, что методов третьей группы несколько, рассмотрим, какой из них оптимален. Параметры трудоемкости и стоимости имеются в таблице 1. Ниже рассмотрим третий немаловажный фактор – погрешность измерения.

Исследование прочности бетона колодца различными методами

На одном из обследованных в 2011 г объектов автором было проведено исследование, в ходе которого осуществлен контроль прочности бетона тремя косвенными неразрушающими методами с последующим испытанием отобранных образцов. Метод пластической деформации не применялся ввиду его низкой производительности.

Объект представляет собой колодец, выполненный из монолитного железобетона, радиусом 12 м и глубиной 8 м. Бетонирование стен колодца велось захватками, разделяющими колодец по высоте на 8 ярусов. Результаты измерений, выполненных различными методами, представлены в таблице 2. Для измерений использованы следующие приборы: ультразвуковой метод – УКС-МГ4 («СКБ Стройприбор») (рис. 2); метод упругого отскока – Original Schmidt N (Proseq) (рис. 3); метод ударного импульса – ИПС МГ4.03 («СКБ Стройприбор»).

Среднее значение регистрируемых параметров, представленное в таблице, получено по выборке, состоящей из результатов не менее чем 30 единичных измерений. Коэффициент вариации V определен как отношение среднего квадратичного отклонения к среднему значению (математическому ожиданию).

Таблица 2. Результаты исследования прочности бетона колодца различными методами

Ярус

Метод

Ультразвуковой, м/сУпругого отскока, у.ед.Ударного импульса, МПаИспытание на прессе
Ср. знач.V,%Ср. знач.V,%Ср. знач.V,%R, МПа
140583.946.27.841.923.441.6
243003.946.68.338.136.340.1
340824.643.77.624.440.235.0
440944.148.28.538.228.542.1
541106.248.98.248.128.136.5
638364.544.67.342.826.530.6
744533.647.67.645.541.639.3
845335.249.79.949.628.736.5
Ср. знач. V4.58.131.6

По данным, представленным в таблице, видно, что наименьшей погрешностью измерения характеризуется ультразвуковой метод. Метод упругого отскока имеет коэффициент вариации приблизительно в 2 раза выше. Разброс результатов измерения методом ударного импульса максимален и характеризуется коэффициентом вариации, превышающим 40%, при среднем значении 31,6%.

Для сопоставления результатов измерений, приведенных в таблице, они представлены в графическом виде на рис. 4. Значения приведены в виде отклонений результата измерения по каждому ярусу от среднего по всем ярусам.

По графикам (рис. 4) можно сделать вывод, что результаты измерений методами ударного импульса и ультразвуковым характеризуются высокой корреляцией и в целом сопоставимы с результатами испытания на прессе. Результаты измерений методом ударного импульса не характеризуются тесной связью ни с другими методами неразрушающего контроля, ни с результатами испытания на прессе.

Сравнение результатов измерения прочности бетона различными методами
Рисунок 4. Сравнение результатов измерения прочности бетона различными методами

Выводы и рекомендации.

  1. Для измерения прочности бетона обследуемых конструкций без нарушения требований современных норм можно применять только методы 1 и 2 групп (испытание отобранных образцов и метод отрыва со скалыванием).
  2. Оптимальным по точности, трудоемкости, стоимости и доступности оборудования, универсальности использования и масштабу разрушения конструкции является метод отрыва со скалыванием по ГОСТ 22690 [2].
  3. В случаях, когда поверхностный слой имеет глубокое повреждение, бетон конструкции заморожен, а также требуются наиболее достоверные результаты, необходимо выполнять отбор проб и испытание в лабораторных условиях.
  4. Применение ультразвукового метода и метода ударного импульса целесообразно для приблизительной оценки прочности, а также для выявления зон с отклонением прочности от среднего значения (зон неоднородности бетона).
  5. Из всех косвенных методов неразрушающего контроля рекомендуется использование ультразвукового метода или метода ударного импульса, а при возможности их сочетание, что также рекомендуется в литературе [11,12].

Литература

  1. ГОСТ 28570-90. Бетоны. Методы определения прочности по образцам, отобранным из конструкций.
  2. ГОСТ 22690-2015. Бетоны. Определение прочности механическими методами неразрушающего контроля. Технические требования.
  3. ГОСТ 17624-2012. Бетоны. Ультразвуковой метод определения прочности.
  4. ГОСТ Р 53231-2008. Бетоны. Правила контроля и оценки прочности. (вышел новый ГОСТ 18105)
  5. СТО 36554501-009-2007. Бетоны. Ультразвуковой метод определения прочности.
  6. СП 13-102-2003. Правила обследования несущих строительных конструкций зданий и сооружений.
  7. ГОСТ 22904-93. Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры.
  8. Штенгель В.Г. О корректном применении НК в обследованиях железобетонных конструкций длительно эксплуатирующихся сооружений // В мире НК. 2009. No3. С. 56-62.
  9. ТСН 50-302-2004. Проектирование фундаментов зданий и сооружений в Санкт-Петербурге.
  10. ГОСТ Р 53778-2010. Здания и сооружения. Правила обследования и мониторинга технического состояния.
  11. Штенгель В.Г. Общие проблемы технического обследования неметаллических строительных конструкций эксплуатируемых зданий и сооружений // Инженерно-строительный журнал. 2010. No7(17). С. 4-9.
  12. РД 153-34.1-21.326-2001. Методические указания по обследованию строительных конструкций производственных зданий и сооружений. Часть 1. Железобетонные и бетонные конструкции.

К.т.н., старший преподаватель А.В. Улыбин
ФГБОУ ВПО Санкт-Петербургский государственный политехнический университет

Определение прочности бетона

Определение прочности бетона

Определение прочности бетона при обследовании зданий и сооружений

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Требуется построить градуировочную зависимость?
Мы выполним все расчеты и поможем построить индивидуальную градуировочную зависимость. Напишите нам, заполните форму ниже. 
Форма заявки

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180-2012), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105-2010 разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

Наименование методаДиапазон применения*, МПаПогрешность измерения**
1Пластической деформации5 ... 50± 30 ... 40%
2Упругого отскока5 ... 50± 50%
3Ударного импульса10 ... 70± 50%
4Отрыва5 ... 60нет данных
5Отрыва со скалыванием5 ... 100нет данных
6Скалывания ребра10 ... 70нет данных
7Ультразвуковой10 ... 40± 30 ... 50%
* по требованием ГОСТ 17624 и ГОСТ 22690;
** по данным источника [3] без построения частной градуировочной зависимости

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624-2012, методы ударного импульса и упругого отскока по ГОСТ 22690. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы [1,2]. В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона [3].

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов [4] прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

Зависимость между прочностью бетона и скоростью ультразвуковых волн
Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям СП 13-102- 2003. При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля [2]. Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

К данной группе по ГОСТ 22690-2015 относится три метода:

  1. Метод отрыва;
  2. Метод отрыва со скалыванием;
  3. Метод скалывания ребра.

Контроль прочности бетона методом отрыва

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем. На сегодняшний день могут применяться современные двухкомпонентные клеи,производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» и др.). В отечественной литературе по испытанию бетона [5, 6] методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

Прибор для метода отрыва с диском для приклеивания к бетону
Рис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (Rbt),по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии [7]:

Форм 2

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как ПОС-50МГ4, ПИВ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5, ГПНС-5. Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105-2010, а также предшествующем ГОСТ Р 53231-2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко применяемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Контроль прочности бетона методом отрыва со скалыванием

Испытание бетона методом отрыва со скалыванием
Рис. 3. Испытание бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости:

Форм 3

где m1— коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически на любом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Контроль прочности бетона методом скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции. Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости:

Форм 4

где m — коэффициент, учитывающий крупность заполнителя.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

ПреимуществаМетод

ОтрывОтрыв со скалываниемСкалывание ребра
Определение прочности бетонов классом более В60-+-
Возможность установки на неровную поверхность
бетона (неровности более 5 мм)
-+-
Возможность установки на плоский участок
конструкции (без наличия ребра)
++-
Отсутствие потребности в источнике
электроснабжения для установки
+*-+
Быстрое время установки-++
Работа при низких температурах воздуха-++
Наличие в современных стандартах-++
* без свердения борозды, ограничивающей участок отрыва

Для наглядности сравнения характеристики прямых методов контроля представлены в табл. 2.

Поданным, приведенным в таблице, видно, что наибольшим числом преимуществ характеризуется метод отрыва со скалыванием.

Однако, несмотря на возможность применения данного метода по указаниям норм без построения частной градуировочной зависимости, у многих специалистов возникает вопрос о точности получаемых результатов и соответствии их прочности бетона, определяемой методом испытания образцов. Для исследования этого вопроса, а также сопоставления результатов измерений, полученных прямым методом, с результатами измерений косвенными методами проведен эксперимент, описанный далее.

Результаты сравнения методов

В лаборатории «Обследование и испытание зданий и сооружений» ФГБОУ ВПО «СПбГПУ» были проведены исследования при использовании различных методов контроля. В качестве объекта исследования использован фрагмент бетонной стены, выпиленный алмазным инструментом. Габариты бетонного образца — 2,0 х 1,0 х 0,3 м. Армирование выполнено двумя сетками арматуры диаметром 16 мм, расположенной с шагом 100 мм с величиной защитного слоя 15-60 мм. В исследуемом образце применен тяжелый бетон на заполнителе из гранитного щебня фракции 20-40.

Для определения прочности бетона использован базовый разрушающий метод контроля. Из образца с помощью установки алмазного сверления выбурены 11 кернов различной длины диаметром 80 мм. Из кернов изготовлены 29 образцов — цилиндров, удовлетворяющих по своим размерам требованиям ГОСТ 28570-90. По результатам испытания образцов на сжатие выявлено, что среднее значение прочности бетона составило 49,0 МПа. Распределение значений прочности подчиняется нормальному закону (рис. 4). При этом прочность исследуемого бетона имеет высокую неоднородность с коэффициентом вариации 15,6% и СКО равным 7,6 МПа.

Для неразрушающего контроля применены методы отрыва, отрыва со скалыванием, упругого отскока и ударного импульса. Метод скалывания ребра не применялся по причине близкого расположения арматуры к ребрам образца и невозможности выполнения испытаний. Ультразвуковой метод не использован, так как прочность бетона выше допустимого диапазона для применения данного метода (табл. 1). Выполнение измерений всеми методами производилось на грани образца, срезанной алмазным инструментом, что обеспечивало идеальные условия с точки зрения ровности поверхности. Для определения прочности косвенными методами контроля использовались градуировочные зависимости, имеющиеся в паспортах приборов, или заложенные в них.

Таблица 3. Результаты измерения прочности различными методами


п/п
Метод контроля
(прибор)
Количество
измерений, n
Среднее значение
прочности, Rm, МПа
Коэффициент
вариации, V, %
1Испытание на сжатие в прессе
(ПГМ-1000МГ4)
2949,015,6
2Метод отыва со скалыванием
(ПОС-50МГ4)
651,14,8
3Метод отрыва (DYNA)349,5-
4Метод ударного импульса
(Silver Schmidt)
3068,47,8
5Метод ударного импульса
(ИПС-МГ4.04)
10078,25,2
6Метод упругого отскока
(Beton Condtrol)
3067,87,27

Распределение значений прочности по результатам испытаний на сжатие
Рис. 4. Распределение значений прочности по результатам испытаний на сжатие

На рис. 5. представлен процесс измерения методом отрыва. Результаты измерений всеми методами представлены в табл. 3.

Поданным, представленным в таблице, можно сделать следующие выводы:

• среднее значение прочности, полученной испытанием на сжатие и прямыми методами неразрушающего контроля, различается не более чем на 5%;

•     по результатам шести испытаний методом отрыва со скалыванием разброс прочности характеризуется низким значением коэффициента вариации 4,8%;

•     результаты, полученные всеми косвенными методами контроля, завышают прочность на 40-60%. Одним из факторов, приведших к данному завышению, является карбонизация бетона, глубина которой на исследуемой поверхности образца составила 7 мм.

Выводы

Измерение прочности методом отрыва
Рис. 5. Измерение прочности методом отрыва

1. Мнимая простота и высокая производительность косвенных методов неразрушающего контроля теряются при выполнении требований построения градуировочной зависимости и учете (устранении) влияния факторов, искажающих результат. Без выполнения этих условий данные методы при обследовании конструкций можно применять только для качественной оценки прочности по принципу «больше — меньше».

2. Результаты измерений прочности базовым методом разрушающего контроля путем сжатия отбираемых образцов также могут сопровождаться большим разбросом, вызванным как неоднородностью бетона, так и другими факторами.

3. Учитывая повышенную трудоемкость разрушающего метода и подтвержденную достоверность результатов, получаемых прямыми методами неразрушающего контроля, при обследовании рекомендуется применять последние.

4. Среди прямых методов неразрушающего контроля оптимальным по большинству параметров является метод отрыва со скалыванием.

А. В. Улыбин, к. т. н.; С. Д. Федотов, Д. С. Тарасова (ПНИПКУ «Венчур», Санкт-Петербург)

Список литературы:

1.  Штенгель В. Г. О корректном применении НК в обследованиях железобетонных конструкций длительно эксплуатирующихся сооружений // В мире НК. 2009. №3. С. 56-62.

2.  Улыбин А. В. О выборе методов контроля прочности бетона построенных сооружений // Инженерно-строительный журнал. 2011. №4 (22). С. 10-15

3.  Джонс Р., Фэкэоару И. Неразрушающие методы испытаний бетонов. Пер.срумынск. М., Стройиздат, 1974. 292 с.

4.  Штенгель В. Г. Общие проблемы технического обследования неметаллических строительных конструкций эксплуатируемых зданий и сооружений // Инженерно-строительный журнал. 2010. №7(17). С. 4-9.

5.  Пособие по обследованию строительных конструкций зданий. М.: ЦНИИПромзданий, 1997.179 с.

6.  Лужин О. В. Обследование и испытание зданий и сооружений/О. В.Лужин и др. М.: Стройиздат, 1987. 264 с.

7.  Строительные конструкции: учебное пособие /Р. Л. Маилян, Д. Р. Маилян, Ю. А. Веселов. Изд. 4-е. Ростов н/Д : Феникс, 2010. 875 с.

Также читайте:

Оконная фурнитура | Двери межкомнатные | Деревянные окна | Фурнитура для межкомнатных дверей

Методы неразрушающего контроля бетона

Методы неразрушающего контроля бетона

В статье речь пойдет о методах неразрушающего контроля бетона, приборах неразрушающего контроля и способах определения прочности бетона.

Качество бетонных и железобетонных изделий и конструкций в значительной степени зависит от эффективного и действенного контроля прочности и однородности бетона, защитного слоя бетона, расположения арматуры, напряжений в арматуре предварительно напряженных железобетонных конструкций.

Определить прочность бетона можно стандартными методами путем изготовления и испытания образцов. Но достоверность контроля прочности и однородности бетона по стандартным образцам недостаточна из-за ряда причин: объем испытания стандартных образцов к превышает 0.01 % уложенного в конструкцию бетона, условия виброформования и режимы твердения образцов и конструкций различны, стандартными методами невозможно определить однородность бетона в изделии и прочность отдельных его участков. При обследовании конструкций зданий и сооружений стандартные методы испытания бетона вообще неприменимы.

Эти недостатки стандартных методов испытания прочности бетона обусловили развитие неразрушающих методов контроля и методов, связанных с испытаниями бетона в нестандартных образцах, извлекаемых из конструкции.

Для неразрушающего контроля прочности бетона используются приборы, основанные на методах местных разрушений (отрыв со скалыванием, скалывание ребра, отрыв стальных дисков), ударного воздействия на бетон (ударный импульс, упругий отскок, пластическая деформация) и ультразвукового прозвучивания.

При обследовании монолитных конструкций и больших массивов бетона применение ударно-импульсных и ультразвуковых приборов должно сочетаться с испытаниями бетона методами отрыва со скалыванием, скалывания ребра или отбора образцов (кернов).

При выборе методов неразрушающего контроля и приборов для проведения испытаний бетона пользователь должен знать их особенности и рекомендуемые области применения.

Достаточно полно методы неразрушающего контроля классифицированы в работах Б.Г. Скрамтаева и М.Ю. Лещинского «Испытание прочности бетона» (М., 1964) и М.Г. Коревицкой «Неразрушающие методы контроля качества железобетонных конструкций» (М., 1989). В этих изданиях даны рекомендации по выбору методов и средств неразрушающего контроля в зависимости от вида контролируемого изделия и условий его эксплуатации.

Однако современная приборная база неразрушающего контроля существенно отличается от рекомендуемой авторами. С начала 90-х годов XX века активно ведется разработка и производство приборов неразрушающего контроля нового поколения с применением электроники и микропроцессорной техники, наращиваются их функциональные возможности.

Особого внимания заслуживают методы отрыва со скалыванием, скалывания ребра и отрыва стальных дисков, которые часто называют методами местных разрушений. Эти методы характеризуются большей точностью по сравнению с другими методами неразрушающего контроля.

В настоящее время в РФ выпускается несколько модификаций сертифицированных приборов, реализующих перечисленные методы (таблицы 1 и 2).

Приборы, основанные на методах местных разрушений, применяются в основном в монолитном домостроении и при обследовании конструкций зданий и сооружений. Недостатки этих методов обусловлены повышенной трудоемкостью и необходимостью определения оси арматуры и глубины ее залегания, что ограничивает их применение при определении прочности бетона отдельных конструкций или их участков, а также при уточнении градуировочных зависимостей ультразвуковых и ударноимпульсных приборов в соответствии с ГОСТ 22690.

Таблица 1. Отрыв со скалыванием.

ТипПредельное усилие 
вырыва, кН, индикация
Тип анкераПредел погрешности, %Масса, кгИзготовитель
ПОС-50МГ4,
внесен в Госреестр РФ
60
цифровая
II - 30, II - 35, II - 48± 25,0"СКБ Стройприбор", Челябинск
ПОС-2МГ42
цифровая
спиральный для 
ячеистых бетонов
± 31,1"СКБ Стройприбор", Челябинск
ПБЛР50
маномер
III - 35± 44,0ИТЦ "Контрос", Москва
ВМ-2.450
цифровая
I - 35, II - 35± 33,2ВЗ "Эталон", Москва

Таблица 2. Скалывание ребра.

ТипПредельное усилие 
вырыва, кН, индикация
Размер грани контролируемого
изделия, мм
Предел 
погрешности, %
Масса, кгИзготовитель
ПОС-50МГ4 "Скол",
внесен в Госреестр РФ
60
цифровая
II - 30, II - 35, II - 48± 25,0"СКБ Стройприбор", Челябинск

Неразрушающего контроля прочности бетона выполняется, как правило, высокопроизводительными приборами после установления корреляции их косвенной характеристики (базовой зависимости) с фактической прочностью контролируемого бетона. Для этих целей применяются приборы ударного действия, основанные на методах ударного импульса (упругого отскока, пластической деформации) и ультразвуковые измерители скорости (времени) распространения ультразвуковых колебаний в бетоне. Характеристики основных приборов ударного действуя, выпускаемых в РФ, приведены в табл. 3.

Следует отметить, что погрешности приборов, указанные в табл. 3, обеспечиваются после уточнения их базовых
градуировок в соответствии с требованиями ГОСТ 22690 либо в случае установления пользователем индивидуальных градуировок для конкретного вида бетона (в приборах типа ИПС предусмотрена возможность установления до 20 индивидуальных градуировок).

Таблица 3.

ТипПредельное усилие 
вырыва, кН, индикация
Основная погрешность %,
не более
Количество базовых
градуировок
Объем памяти,
связь с ПК
Масса,кгИзготовитель
ИПС-МГ4.013...100
цифровая
± 101500
RS-232
0,85"СКБ Стройприбор", Челябинск
ИПС-МГ4.03,
внесен в Госреестр РФ
3...100
цифровая
± 84415000
USB
0,85"СКБ Стройприбор", Челябинск
Beton Pro Condtrol3...100
цифровая
± 1011000
RS-232
0,95НПП "Кондтроль",
Челябинск
ОМШ-15...40
стрелочная
± 20нетнет1,5Фирма ВНИР, Москва
ИТЦ "Контрос", Москва
Молоток
Кашкарова
5...40
нет
± 20нетнет1,2Фирма ВНИР, Москва
ИТЦ "Контрос", Москва

Характеристики ультразвуковых приборов, выпускаемых в РФ и Молдове, приведены в табл. 4. При использовании ультразвуковых приборов для определения прочности бетона следует учитывать, что диапазон контролируемых прочностей ограничивается классами В7,5…В35 (10…40 МПа) согласно ГОСТ 17624. При более высоких прочностях возможна лишь дефектоскопия бетона и локализация скрытых дефектов (трещины, раковины, несплошности).

Таблица 4.

ТипБаза прозвучивания, ммДиапазон измерения 
времени, мкс
Предел погрешности
измерения времени, %
Рабочая
частота, кГц
Масса,кгИзготовитель
УК 1401,
внесен в Госреестр РФ
15015...100± 1700,35ООО АКС, Москва
УК-14ПМ12020...9900± (0,01Т+0,1)20...3002,3АО "Интроскоп", Молдова
УК-10ПМС-10...5000± 0,525...10008,7АО "Интроскоп", Молдова
Бетон-3212015...6500± (0,01Т+0,1)601,4ИТЦ "Контрос", Москва
УКС-МГ4,
внесен в Госреестр РФ
11015...2000± (0,01Т+0,1)60...700,95"СКБ Стройприбор", Челябинск
А1212Дефектоскопия и толщинометрия бетона на глубину до 1050 мм20...1501,6ООО АКС, Москва

Контроль прочности ударными и ультразвуковыми методами ведется в поверхностных слоях бетона (кроме сквозного ультразвукового прозвучивания), из-за чего состояние поверхностного слоя может оказывать существенное влияние на результаты контроля. При воздействии на бетон агрессивных факторов (химических, термических или атмосферных) необходимо выявить толщину поверхностного слоя с нарушенной структурой.

Подготовка бетона таких конструкций для испытаний неразрушающими методами заключается в удалении поверхностного слоя на участке контроля и зачистке поверхности наждачным камнем. Прочность бетона при этом определяют преимущественно приборами, основанными на методах местных разрушений, или путем отбора образцов. При использовании ударно-импульсных и ультразвуковых приборов контролируемая поверхность должна иметь шероховатость не более Ra 25, а градуировочные характеристики приборов требуют уточнения.

Пользователь должен знать, что базовая либо типовая градуировочная зависимость, с которой может поставляться прибор, с достаточной степенью точности воспроизводит прочность бетона того вида (класса), на котором прибор калибровался. Изменение вида крупного заполнителя, влажности, возраста бетона и условий его твердения приводит к увеличению погрешности измерений. Для ультразвуковых приборов перечень факторов, влияющих на точность измерений, еще шире (Лещинский М.Ю. Испытание бетона. М., 1980).

В.В. Гулунов, директор ООО «СКБ Стройприбор»

Также читайте:

Оконная фурнитура | Двери межкомнатные | Деревянные окна | Фурнитура для межкомнатных дверей

Дефекты конструкций и приемы устранения дефектов

Дефекты конструкций в процессе строительства и современные приемы их устранения

В статье дается анализ основных дефектов, возникающих при строительно-монтажных работах, а также проявляющихся в ходе эксплуатации зданий и сооружений.

Лаборатории ГУП «НИИМосстрой» осуществляют обследования на строящихся строительных объектах и довольно часто выявляют целый ряд нарушений и дефектов. Дефекты зачастую приводят к значительным экономическим и материальным потерям в виде затрат на переделку и исправления. Есть случаи, когда дефекты могут привести к аварии с обрушением отдельных элементов конструкций или всего сооружения.

Анализ причин аварий на строящихся и эксплуатируемых зданиях и сооружениях показал, что их причинами в 60-80% являются низкое качество выполнения строительно-монтажных работ.

Для улучшения качества строительства большое значение имеет изучение дефектов, допускаемых при строительстве (вклад ученых В.Г. Гвоздева, В.Л. Клевцова, М.Н. Лашенко, И.А. Физделя и др.)


Скол бетона с оголением и коррозией рабочей арматуры
Рисунок 1а. Скол бетона с оголением и коррозией рабочей арматуры


Скол бетона с оголением и коррозией рабочей арматуры
Рисунок 1б. Скол бетона с оголением и коррозией рабочей арматуры



Непровибрированные участки с образованием каверн под металлической балкой
Рисунок 2а. Непровибрированные участки с образованием каверн под металлической балкой


Непровибрированные участки с образованием каверн под металлической балкой
Рисунок 2б. Непровибрированные участки с образованием каверн под металлической балкой



Рисунок 3. Пористая структура бетона
Рисунок 3а. Пористая структура бетона


Пористая структура бетона
Рисунок 3б. Пористая структура бетона



Пористая структура бетона
Рисунок 3в. Пористая структура бетона


Пористая структура бетона
Рисунок 3г. Пористая структура бетона


При выполнении строительно-монтажных работ часто наблюдаются отклонения от проектных величин в размерах, прочности и физических свойствах материалов.

Статистика аварий, вызванных дефектам и строительномонтажных работ, подтверждает вышесказанное:

  • устройство оснований и фундаментов — 11%;
  • монтажно-сварочные работы — 31%;
  • монолитные бетонные работы — 3%;
  • кровельные работы — 2%.

Дефекты возникают в основном за счет:

  • непроектного выполнения конструкций;
  • нарушений технологии производства;
  • применения материалов, изделий, конструкций с дефектами;
  • некачественного уплотнения бетонной смеси;
  • неудовлетворительного ухода за бетоном в процессе твердения;
  • применения бетонной смеси с прочностными показателями ниже проектных;
  • применения арматуры с явлением коррозии, что также вызывает снижение прочности, образование трещин, снижение долговечности и эксплуатационных свойств.
Таблица 1. Основные дефекты при возведении монолитных железобетонных конструкций и их влияние на качество
Возможные отклонения (нарушения)Дефекты
1. Несоответствие параметров прочности, морозостойкости, плотности, водонепроницаемости бетона проекту и нормамСнижение прочности и долговечности
2. Несоответствие арматуры по прочности и химическому составуСнижение прочности
3. Положение рабочих стержней не соответствует проектуСнижение прочности
4. Нарушение требований проекта и норм в расположении рабочих швов при бетонированииСнижение прочности
5. Нарушение правил зимнего бетонированияСнижение прочности
6. Невыполнение правил по уходу за бетономСнижение прочности
7. Загружение конструкций до проектной прочностиВозможно разрушение конструкции
8. Отклонение в толщине защитного слоя, превышающего нормуСнижение прочности
9. Бетонная поверхность имеет поры, раковины, обнажение арматурыСнижение долговечности


Косослой бетона, дефектный холодный шов
Рисунок 4а. Косослой бетона, дефектный холодный шов


Косослой бетона, дефектный холодный шов
Рисунок 4б. Косослой бетона, дефектный холодный шов



Оголение арматуры, отсутствие защитного слоя бетона
Рисунок 5а. Оголение арматуры, отсутствие защитного слоя бетона


Оголение арматуры, отсутствие защитного слоя бетона
Рисунок 5б. Оголение арматуры, отсутствие защитного слоя бетона


Таким образом, следует, что для обеспечения качества возводимых монолитных конструкций необходимо в обязательном порядке организовать постоянный контроль всех строительно-монтажных работ на объекте квалифицированными кадрами.

Значительное количество дефектов наблюдается при устройстве оснований и фундаментов:

  • за счет нарушения производства земляных работ;
  • рыхлая песчаная подсыпка вызывает неравномерную осадку фундаментов и появление трещин;
  • повреждения сооружений могут быть также вследствие пучения грунта при его промораживании.

Некачественное выполнение гидроизоляции фундаментов повышает влажность стен, что может привести к разрушению фундамента.

При несоблюдении толщины защитного слоя бетона арматурные стержни либо выходят на поверхность, либо закрыты тонким слоем цементного раствора, что приводит к коррозии арматуры, снижению сцепления арматуры с бетоном.

При понижении температуры наружного воздуха ниже 0°С процессы твердения бетона, уложенного в этот период, значительно снижаются. Понижение прочности монолитного бетона может привести к обрушению конструкций.
При применении при зимнем бетонировании добавок — ускорителей твердения бетона следует иметь в виду, что введение добавок, содержащих хлористые соли, вызывает коррозию арматуры.

Влияние дефектов, допущенных в ходе строительства, может оцениваться с позиций обеспечения надежности и безаварийности сооружений или с экономических позиций.

Существует целый ряд приемов и технологий, за счет которых возможно не допустить дефекты конструкций.

  1. Расчет на прочность является определяющим, и при его невыполнении может произойти разрушение конструкции.
  2. В расчетах по оценке несущей способности следует принимать наихудший вариант, т.е. максимально выявленную величину дефекта в конструкции, так как наибольший дефект приводит к разрушению.

Таким образом, дефекты в конструкциях должны рассматриваться с позиций надежности сооружения. Оценку можно определять по методике, разработанной Добромыс-ловым А.Н. «Оценка надежности зданий и сооружений по внешним признакам» (М.: Издательство АС В, 2004 г.).

Методика дает возможность:

  • в короткие сроки оценить надежность и техническое состояние строительных конструкций;
  • учитывать влияние повреждений на надежность конструкций, что позволит вовремя выполнить ремонт и усиление и тем самым обеспечить их надежность при эксплуатации.

Также надежность сооружения косвенно может быть оценена в виде коэффициента запаса прочности сооружения, категорий его технического состояния.

Наплывы бетона с нарушением геометрии конструкции
Рисунок 6. Наплывы бетона с нарушением геометрии конструкции

Большое значение также имеет материал книги Добромыслова А.Н. «Диагностика повреждений зданий и сооружений» для проведения обследований качества строительства: рассмотрены признаки аварийного состояния строительных конструкций и сооружений, прогнозирования деформаций сооружений, представлен полный анализ повреждений конструкций.

Целый ряд дефектов могут снизить прочность и устойчивость конструкции.

Например, дефект, снижающий прочность конструкции на 25% и более, является критическим, представляющим опасность на стадии монтажа и при эксплуатации сооружения.

Дефект, снижающий несущую способность конструкции более чем на 35%, свидетельствует об аварийном состоянии конструкции.

Физико-механические свойства бетона определяются характером процесса гидратации цемента и внутренним напряженным состоянием. Это связано с условиями выдерживания бетона — температурой и влажностью среды. Температура и влажность среды влияют на термические напряжения в массивных конструкциях за счет тепловыделения цемента.

Залогом роста прочности является поддержание влажности бетона, т.е. влажность среды оказывает влияние на твердение и на содержание воды в цементах.

При полном насыщении влагой гидратация цемента проходит полно и длительное время, что улучшает показатели водонепроницаемости и морозостойкости бетона.

Увлажнение бетона после его обезвоживания частично только восстанавливает его влагосодержание.

Особенно отрицательно сказывается на свойствах бетона испарение воды вскоре после уплотнения бетонной смеси.

Раннее обезвоживание бетона отрицательно влияет на его прочность и сцепление с арматурой.

В результате пластической усадки появляются поверхностные трещины с раскрытием до нескольких миллиметров.

Температура твердения бетона, также как и влажность, влияет на процессы гидратации цемента.

Нормальные условия выдерживания бетона приняты следующие:

  • температура (20±2)°С;
  • относительная влажность >90%.


Пустоты глубиной более толщины защитного слоя бетона, оголение арматуры, мусор в бетоне
Рисунок 7а. Пустоты глубиной более толщины защитного слоя бетона, оголение арматуры, мусор в бетоне


Пустоты глубиной более толщины защитного слоя бетона, оголение арматуры, мусор в бетоне
Рисунок 7б. Пустоты глубиной более толщины защитного слоя бетона, оголение арматуры, мусор в бетоне


Структура бетона, набравшего 30-40% марочной прочности, достаточно прочная.

Для получения качественной продукции важно выполнять мероприятия по уходу за бетоном, т.е. создать необходимые условия для твердения (необходимая влажность и благоприятная температура).

Влагу в бетоне можно сохранить следующими способами:

  • задержкой распалубки, распылением воды;
  • применением влагоудерживающих ковров;
  • при помощи защитного слоя, который наносится на бетон в жидком виде и при затвердевании образует тонкую пленку.

Необходимо предохранять поверхности от высыхания и в промежутках между распылением воды, т.к. процесс попеременного увлажнения и высыхания свежеуложенного бетона приводит к образованию волосяных трещин и даже к растрескиванию поверхности.

Поэтому часто применяется непрерывное разбрызгивание воды, которое обеспечивает более постоянный приток влаги, чем обильная поливка водой.

Продолжительность ухода за бетоном до достижения прочности 50-70% устанавливается проектом.
Следует соблюдать правила по уходу за бетоном при зимнем бетонировании.

Методы ухода за бетоном при зимнем бетонировании должны обеспечить твердение бетона в теплой и влажной среде в течение срока до набора бетоном необходимой прочности, характеризующее сохранение структуры бетона за счет выполнения следующих мероприятий:

  1. Использование внутреннего запаса теплоты бетона, которое обеспечивается:
    а) применением высокопрочного и быстротвердеющего портландцемента;
    б) ускорителей твердения бетона;
    в) уменьшением количества воды в бетонной смеси.

Внутренний запас тепла в бетоне создают путем подогрева материалов бетонной смеси и воды до температуры 50°С. Бетонная смесь при выходе из бетоносмесителя должна иметь температуру не выше 30-40°С. Применяется также «способ термоса» при зимнем бетонировании: подогретая бетонная смесь твердеет в условиях теплоизоляции. Это считается рациональным способом при сохранении тепла в течение 5-7 суток. Но этот метод возможен только в массивных конструкциях.

  1. а) применение дополнительной подачи бетону теплоты извне методом электроподогрева, пропуская через бетон электрический переменный ток;
    б) при зимнем бетонировании применяется также обогрев окружающего воздуха;
    в) возможно обеспечить твердение бетона в тепляках из фанеры, а также под брезентовыми навесами, где устанавливаются временные печи, специальные газовые горелки или используется воздушное отопление;

  2. введение в состав бетона химических добавок.

На рисунках представлены основные дефекты конструкций на строящихся объектах в городе Москве.

Контроль дефектов бетона

Пример конструкции с участком недовибрированного бетона
Рис. 1. Пример конструкции с участком недовибрированного бетона

Статья посвящена вопросам контроля, «лечения» и локализации дефектов бетона монолитных конструкций, даются различные рекомендации по выявлению и устранению различных видов дефектов. В статье также приводятся наиболее часто встречающиеся дефекты конструкций.

К настоящему моменту монолитное домостроение занимает все большую долю в области промышленного и гражданского строительства в городах России. Данному факту способствуют такие положительные предпосылки, как скорость, инновации и уникальность проектов, а также свободный выбор конфигурации будущего здания, не зависящий от типовых элементов. С каждым годом совершенствуется технология производства железобетонных конструкций, внедряются новые строительные материалы, разрабатываются индивидуальные проекты. Наряду с этим с каждым годом ужесточаются

Дефект, устраненный ремонтной смесью типа Mapegrout Thixotropic
Рис. 2. Дефект, устраненный ремонтной смесью типа Mapegrout Thixotropic

требования к выполнению строительно-монтажных работ и проектных решений. Для достижения положительного результата работы на объектах необходимо осуществлять контроль за качеством процесса производства.

Особое внимание необходимо уделять качеству возводимого монолитного железобетонного каркаса здания как основного «скелета» воплощенного в реальность проекта.

В данной статье отведем особое внимание вопросу по контролю, «лечению» и локализации дефектов бетона монолитных конструкций.

Сегодня существует достаточное количество рекомендаций по выявлению и устранению различных видов дефектов. Попытаемся сформулировать основные аспекты по минимизации данных воздействий на конструктив.

Согласно классификатору существует 2 основных вида дефектов:

  • значительный — дефект, при наличии которого существенно ухудшаются эксплуатационные характеристики строительной продукции и ее долговечность. Такие дефекты подлежат устранению до скрытия их последующими работами;
  • критический — дефект, при наличии которого здание, сооружение, его часть или конструктивный элемент функционально непригодны, дальнейшее ведение работ по условиям прочности и устойчивости небезопасно либо может повлечь снижение указанных характеристик в ипроцессе эксплуатации. Данные дефекты подлежат безусловному устранению до начала последующих работ или с приостановкой начатых работ.

Следует отметить, что наиболее часто встречающимися дефектами конструкций являются:

  • участки с оголенной арматурой;
  • наплывы;
  • трещины;
  • полости и пустоты в «теле» бетона, а также в узлах сопряжения конструкций и в зоне холодных швов;
  • сколы на поверхности;
  • участки с недовибрированным бетоном (см. рис. 1);
  • раковины и каверны;
  • нарушение толщины защитного слоя бетона;
  • инородные включения;
  • участки с расслаивающимся и шелушащимся бетоном;
  • участки с промороженным бетоном.

Исправленный дефект балки
Рис. 3. Исправленный дефект балки

Стоит сказать о причинах появления дефектов, так как, предотвратив их, зачастую можно избежать ненужных финансовых затрат и немалой трудоемкости, связанных с ремонтом конструкций. Такой дефект, как наплыв из бетона, является как одним из следствий неправильной установки или недостаточной герме-алчности опалубки, либо ее низкого качества. Полости и пустоты в конструкциях образуются при недостаточном уплотнении бетонной смеси, чрезмерного воздухововлечения и попадания в зону бетонирования инородных предметов (строительного мусора) и ряда других факторов.

Недостаточная толщина защитного слоя зачастую связана с неправильной установкой или смещением опалубки, ее некачественной поверхностью, а также с нарушением или отступлением от проекта при выполнении арматурных и бетонных работ.

Исправленный дефект в примыкании конструкций
Рис. 4. Исправленный дефект в примыкании конструкций

Появлению трещин, как правило, сопутствуют неправильный уход или его отсутствие за конструкциями (резкий перепад температур), в иных случаях — нагружение конструкций до достижения бетоном требуемой проектом прочности, ошибки в чертежах, не до конца проработанные решения по проблемам процесса проведения земляных работ и ряд других причин.

В качестве материала для лечения дефектов применяют сухие многокомпонентные смеси из специального безусадочного цемента, фракционированных заполнителей, армирующих волокон и комплекса полимерных добавок (Mapegrout Thixotropic (см. рис. 2), БИРСС, Sika, CONSOLIT BARS 113, ЭМАКО S88 или аналогичные составы (по согласованию с НИИЖБ). Такие смеси при затворении водой позволяют приготовить безусадочную, пластичную, не расслаивающуюся смесь, обеспечивающую следующие основные требования по прочности, адгезии, трещиностойкости, морозостойкости, водонепроницаемости ит.д.

Исправленный дефект в конструкции стены
Рис. 5. Исправленный дефект в конструкции стены

Вышеперечисленные показатели должны быть не ниже проектных значений монолитных железобетонных конструкций.

Также существует явление так называемого «ремонта», целью которого является лишь сокрытие дефектов различными способами: замазывание трещин, полостей несоответствующими ремонтными составами, цементной смесью на неподготовленное основание (без его обеспыливания, обезжиривания, конфигурирования и т.д.). Данный факт ведет к негативным последствиям и значительным финансовым потерям. Существует значительный риск деструкции конструкций и, как следствие, некачественно выполненных последующих отделочных работ. Для устранения данной проблемы в первую очередь рекомендуется создавать специализированные бригады или звенья, прошедшие соответствующее обучение.

Как правило, ремонтные работы начинают осуществлять после тщательного изучения дефектных участков, к которым доставляются необходимый инвентарь, приспособления и средства для безопасного выполнения работ.

Основным и наиболее часто встречающимся дефектом является недовибрированный бетон.

Пример монолитности конструкций после использования деревянного бруса
Рис. 6. Пример монолитности конструкций после использования деревянного бруса

Важно отметить, что в зимний период бетонирования при скоростном монолитном домостроении отремонтированную поверхность необходимо защитить тепловлагоизоляционным материалом, тем самым предохраняя ее от испарения влаги и сохраняя тепло в «теле» ремонтируемого участка, учитывая еще и собственную экзотермию смеси за счет цементного вяжущего (см. рис. 3, 4, 5). В построечных условиях в качестве защитного покрытия может служить соответствующий размер фанерной доски, совмещенный с распространенным материалом «Этафом».

Также считаем нужным отметить, что для соблюдения монолитности стен лифтовой шахты с нижележащим перекрытием необходимо с внутренней стороны перед установкой стеновой опалубки жестко установить деревянный брус. Это позволяет исключить перепад в бетоне между торцом плиты перекрытия и стенами шахты (см. рис. 6).

Эти приемы позволяют сэкономить время, трудовые и материальные затраты при ускоренном темпе строительства и сжатых производственных сроках.

В заключение отметим, что при строительстве объектов любого назначения необходимо осуществлять регулярный контроль за процессом производства и стараться вовремя соблюдать нормативные, технологические и проектные требования.

Библиографический список

  1. СП 13-102-2003 «Правила обследования несущих строительное конструкций зданий и сооружений».
  2. Классификатор основных видов дефектов в строительстве и промышленности строительных материалов. Госстрой России, М.: ЦИТП Госстроя России, 1993.
  3. ГОСТ Р 53778-2010 «Здания и сооружения. Правила обследования и мониторинг технического состояния».
  4. МРДС 02-08 «Пособие по научно-техническому сопровождению и мониторингу строящихся зданий и сооружений, в том числе большепролетных, высотных, уникальных».
  5. CHuII 3.03.01-87 Несущие и ограждающие конструкции. М., 1998. в. СНиП 52-01-2003 «Бетонные и железобетонные конструкции. Основные положения».
  6. Пособие по обследованию строительных конструкций. АО «ЦПИ-ИПромзданий», М.: 1997.
  7. Руководство по проведению натурных обследований промышленных зданий и сооружений, АО «ЦНИИПромзданий», М., 1997.
  8. СП 70.13330.2012 «Несущие и ограждающие конструкции».
  9. СП 63.13330.2012 «Бетонные и железобетонные конструкции. Основные положения».

Ультразвуковой дефектоскоп

Контроль дефектов с помощью ультразвукового дефектоскопа УКС-МГ4

Современный строительный процесс характеризуется стремительными темпами, годами возводить одно здание — и непродуктивно, и дорого, и экономически невыгодно. В условиях быстрого строительства особую важность приобрел вопрос контроля безопасности и прочности строительных материалов, для чего были разработаны приборы, принцип действия которых основан на использовании ультразвуковых сигналов.

Ультразвуковой дефектоскоп УКС-МГ4
Ультразвуковой дефектоскоп УКС-МГ4

Приборы УКС-МГ4 и УКС-МГ4С предназначены для контроля дефектов, определения прочности бетона в сборных и монолитных бетонных и железобетонных изделиях и конструкциях по ГОСТ 17624, определения прочности силикатного кирпича по ГОСТ 24332 и других твердых материалов. Принцип их работы основан на измерении времени распространения импульсных ультразвуковых колебаний на установленной базе прозвучивания.

При работе с прибором УКС-МГ4 используется поверхностный, а при работе с прибором УКС-МГ4С — поверхностный и сквозной методы прозвучивания. При сквозном про-звучивании излучатель устанавливают с одной стороны конструкции, а приемник — с другой, поэтому оценка прочности бетона проводится по всей толщине изделия, в том числе и в его сердцевине. По скорости распространения продольной звуковой волны можно выявить наличие пустот, трещин и прочих дефектов, расположенных внутри бетонного изделия. Для обеспечения надежного акустического контакта между поверхностью изделия и ультразвуковыми преобразователями прибора применяется контактная смазка.

При отсутствии двухстороннего доступа к изделию используется метод поверхностного прозвучивания. Ультразвуковые преобразователи для поверхностного прозвучивания имеют сухой точечный контакт с исследуемой поверхностью и не нуждаются в контактной смазке. Измерения методом поверхностного прозвучивания обладают меньшей трудоемкостью. Этот способ можно применять для выявления трещин в массивных конструкциях, а также возникающих под действием пониженных температур и химических факторов дефектов в бетоне.

Область применения приборов:

  • строящиеся и эксплуатируемые здания и сооружения;
  • гидротехнические сооружения;
  • сооружения с затрудненным двухсторонним доступом к контролируемым участкам;
  • предприятия стройиндустрии.

Электронный блок приборов совмещен с преобразователями для поверхностного прозвучивания, поэтому они удобны в работе, имеют малые габариты и вес.

Датчики для сквозного прозвучивания от ультразвукового дефектоскопа УКС-МГ4С
Датчики для сквозного прозвучивания от ультразвукового дефектоскопа УКС-МГ4С

Отличительной особенностью приборов УКС-МГ4 и УКС-МГ4С от подобных приборов ультразвукового контроля является применение уникального способа обработки информации. Установленный в микроконтроллер приборов «искусственный интеллект» определяет силу прижатия пьезоэлектрических преобразователей к поверхности изделия, задает параметры ультразвуковых импульсов, рассчитывает скорость прохождения ультразвуковых колебаний в материале изделия исходя из анализа серии уже принятых ультразвуковых колебаний. Показания приборов остаются стабильными при умеренных акустических и электрических помехах. При работе в условиях низкой освещенности по окончании цикла измерения автоматически включается подсветка дисплея.

Ультразвуковые приборы для контроля прочности материалов имеют несколько функций:

  • измерение времени и скорости распространения ультразвука в материалах;
  • определение прочности строительных материалов по установленной градуировочной зависимости
  • оценка прочности бетонов неизвестного состава по градуировочным характеристикам ЦНИИОМТП;
  • возможность установки индивидуальных градуировок для различных видов стройматериалов;
  • определение глубины трещин;
  • поиск дефектов по аномальному уменьшению скорости распространения ультразвука;
  • архивация получаемой в результате измерений информации в памяти прибора с фиксацией времени, даты, вида, характеристики стройматериала и коэффициента вариации;
  • передача информации, полученной в результате измерений, на персональный компьютер.

Таблица 1. Технические характеристики ультразвуковых дефектоскопов УКС-МГ4 и УКС-МГ4С

Наименование характеристикиУКС-МГ4
УКС-МГ4С
Диапазон измерений времени распространения УЗК, мкс15…15015...2000
Дискретность индикации времени распространения УЗК, мкс0,1
Пределы основной абсолютной погрешности измерения времени распространения УЗК, мкс±(0,01t+0,1)
Амплитуда напряжения генератора зондирующих импульсов , В500±100
Рабочая частота колебаний, кГц70±15
Габаритные размеры, мм230х130х55
Масса прибора, кг0,50,7

По материалам ООО «СКБ Стройприбор» (Челябинск)

Бетон с противоморозными добавками

Структура и прочность бетона с противоморожными добавками

В настоящее время в строительстве интенсивно развиваются и внедряются в производство технологии монолитного домостроения, позволяющие значительно сокращать сроки возведения объектов, снижать себестоимость строительства и расширять гамму конструктивных и архитектурно-планировочных решений зданий и сооружений. В связи с этим повышаются и требования к технологическим свойствам бетонных смесей и физико-механическим характеристикам бетона. Сегодня стало очевидным, что получение высококачественных бетонных смесей и бетонов невозможно без применения комплекса химических и минеральных модификаторов бетонов, позволяющих варьировать свойства материалов в широких пределах. Следует отметить, что расширение области применения монолитного бетона сдерживается некоторыми негативными факторами, например, такими, как климатические, а также производственными, поскольку бетон укладывается и набирает прочность в условиях, существенно отличающихся от заводских.

В климатических условиях средней полосы России, не говоря уже о северных районах, продолжительность холодного периода составляет 4-6 мес., что требует не только создания благоприятных температурных условий для набора прочности бетона, но и научно-обоснованного и рационального применения противоморозных и комплексных добавок.

Одним из способов повышения эффективности зимнего бетонирования является применение комплексных добавок, активизирующих процессы твердения и понижающих температуру замерзания жидкой фазы бетона. Добавки могут применяться как индивидуально, так и совместно с другими способами зимнего бетонирования, и являются наиболее технологичным и малозатратным способом производства бетонных работ при пониженных температурах. Традиционно в качестве противоморозных добавок применяются сильные и слабые электролиты, понижающие температуру замерзания жидкой фазы растворов и бетонов и активирующие процессы гидратации и твердения растворов и бетонов.

Наиболее эффективными в этом отношении являются неорганические вещества, которые, в соответствии с законом Рауля, понижают температуру замерзания воды тем в большей степени, чем меньшее значение имеет их молекулярная масса. Сложность проектирования комплексных добавок заключается не только в исследовании криоскопических свойств растворов добавок, но и в анализе их влияния на процессы формирования структуры, схватывание и основные свойства растворов и бетонов.

Достаточно широкое распространение в технологии зимнего бетонирования получили комплексные добавки на основе бесхлоридных компонентов, таких, как нитрит натрия, нитрат кальция, ацетаты и формиаты кальция и натрия и некоторые другие, используемые, как правило, совместно с пластифицирующими добавками и суперпластификаторами.

Анализ влияния бесхлоридных добавок на формирование структуры и состав продуктов гидратации цементных систем необходим для расширения представлений о механизмах действия ускоряющих и противоморозных добавок на формирование ранней структуры цементных растворов и бетонов, поскольку именно на начальном этапе гидратации и твердения добавки влияют па изменение качественного и количественного составов продуктов гидратации цементных материалов, что отражается на кинетике структурообразования. Чрезвычайно важными являются представления о характере влияния добавок на свойства растворов и бетонов, подвергающихся раннему замораживанию, т. к. более значительным деструктивным воздействиям отрицательных температур может подвергаться структура, находящаяся на стадии начала кристаллизационного упрочнения (особенно в присутствии активирующих добавок) и не достигшая критической прочности. Например, для цементно-песчаных растворов более безопасным, с точки зрения влияния деструктивных процессов, является замораживание смесей сразу после изготовления. Однако для бетонов раннее замораживание является весьма негативным и способствует значительному снижению физико-механических свойств материала.

Таблица 1. Кинетика твердения C3S с добавками-ускорителями

СоставКоличество добавки, % от
массы вяжущего
Прочность, МПа,
через, 7 сут
Прочность, МПа,
через, 14 сут
Прочность, МПа,
через, 28 сут
Прочность, МПа,
через, 90 сут
C3S бездобавок B/T=0,5-10,711,822,926,1
с добавкой CaCl2134,238,843,144,6
-236,542,845,746,7
с добавкой MgCl21282929,730,5
-228,128,629,331,3
с добавкой NaCl118,325,228,831,4
-22026,83032,2
с добавкой KCl121,623,524,927,9
-222,12425,428,8
с добавкой NaNO21121424,527
-213,114,72527,2
с добавкой Ca(NO3)2110,712,324,632,8
-211,612,925,734,6
с добавкой CH3COONa114,317,529,830,8
-215,419,131,432
с добавкой Ca(CH3COO)2117,921,530,432,6
-218,722,83233

Анализ механизмов действия добавок и процессов начального структурообразования позволит не только назначать оптимальные дозировки добавок, но и направленно воздействовать на процессы схватывания и твердения цементных материалов.

В работе была выполнена серия рентгено-фазовых исследований влияния добавок Ca(N03)2 и NaNO2 на состав продуктов гидратации и прочность основного минерала цементного клинкера — трехкальциевого силиката (C3S). Оценка влияния добавок на формирование начальной структу ры цементных материалов проводилась по изменению кинетики нарастания пластической прочности (Рт) цементно-песчаных растворов состава 1:2 при В/Ц = 0,5-0,55, твердеющих в нормальных условиях в течение 36 — 48 часов. Исследования проводились с добавками Ca(NO3)2 NaNO2, а также с хлоридами кальция и натрия при обычных и повышенных дозировках.

При сравнении рентгенограмм C3S с добавками NaNO2, и Ca(N03) отмечается значительное увеличение интенсивности линий СН и торберморитового геля в присутствии добавки Ca(N03)2. Для состава с нитритом натрия, так же, как и хлоридом натрия, характерным является увеличение интенсивности линий торберморитового геля как по абсолютной величине, так и относительно наиболее стабильной фазы Ca(N03)2(CH). Таким образом, соли натрия в большей степени способствуют формированию и кристаллизации тоберморитового геля, в отличие от солей кальция, для которых в большей степени характерно увеличение количества извести в системе и повышение степени ее закристаллизованности. Однако в присутствии нитрата кальция происходит увеличение интенсивности линий не только СН, но и гидросиликатов кальция. Снижение интенсивности линий извести (4,93 А), по сравнению с контрольным составом и с составами с другими добавками, связано с образованием большего количества тоберморитового геля. Следует отметить, что прочность образцов C3S с добавкой Ca(N03)2 в возрасте 90 сут. ниже, чем с добавкой СаСl2, но в среднем выше, чем с другими добавками, поэтому, с точки зрения влияния на фазовый состав и прочностные показатели C3S, нитрат кальция является одной из наиболее «универсальных» добавок (табл. 1).

Отметим, что не всегда состав и характер изменения количества гидратных фаз в присутствии добавок коррелирует с кинетикой твердения и изменением прочности не только цементов, но и клинкерных материалов. Это может быть связано с характером влияния различающихся по электронному строению катионов добавок на процессы растворения вяжущих, кристаллизацию и перекристаллизацию новообразований. Деформационные напряжения, возникающие под действием добавок электролитов (особенно при повышенных дозировках) затрудняет распад твердых растворов гидросиликатов кальция, в результате кристаллизация не завершается в течение длительного периода. Для процессов гидратации, схватывания и твердения большую роль играет «биография» кремнеземистой составляющей, ее состояние, удельная поверхность, присутствие добавок, состояние воды затворения, водотвердое отношение, температура, механическое воздействие (перемешивание, виброобработка) и много других случайных факторов. Переменный характер таких динамических характеристик любого химического взаимодействия, как энергия активации и константа скорости химической реакции, говорит о том, что гидросиликаты кальция образуются по разным механизмам через различные переходные состояния, которые зависят от перечисленных выше факторов. Именно поэтому в одной и той же системе СаО — SiO2— Н20 могут формироваться гидросиликаты кальция различной структуры.

Рентгенофазовый анализ и исследования процессов гидратации и твердения C3S свидетельствуют о том, что механизм повышения прочности C3S в присутствии ускорителей твердения связан с активацией процессов образования ГСК различной структуры и кристаллохимических свойств и изменением соотношения между гидросиликатами кальция и СН в твердеющей системе. Увеличение степени закристаллизованное гидратов в присутствии добавок, гранулометрическая неоднородность и разность плотностей образовавшихся фаз приводят, в целом, к повышению прочности материала.

Исследования влияния модифицирующих добавок на процессы начального структурообразования цементных композиций представляют значительный научный и практический интерес, т. к. позволяют проанализировать характер действия добавок на формирование коагуляционной и начальной кристаллизационной структуры, во многом определяющей последующие процессы твердения и свойства цементных материалов.

Рассматривая процессы гидратации и твердения вяжущих веществ с модифицирующими добавками, следует отметить, что существенная роль в формировании структуры и прочности цементных композиций принадлежит обменным химическим реакциям и реакциям присоединения, протекающим с образованием основных солей и сложных по составу солей-гидратов. Продукты химических реакций, являясь структурными элементами, могут также осаждаться на гидратирующихся зернах вяжущего, создавая (усиливая) экранирующий эффект. Алюминатные и алюмоферритовые фазы являются наиболее активными в этом отношении составляющими портландцементного клинкера.

Бетон с противоморозными добавками
Бетон с противоморозными добавками

Оценка влияния добавок на формирование первичного каркаса цементных композиций имеет особое значение при использовании некоторых ускорителей твердения при повышенных дозировках в качестве противоморозных. Достаточно известны случаи, когда добавки, являющиеся эффективными ускорителями твердения при использовании их в небольших количествах, приводят к совершенно противоположному эффекту при увеличении дозировок.

Исследования влияния ускорителей твердения на раннее структурообразование цементно-песчаных композиций проводились как с использованием индивидуальных добавок, так и комплексных — на основе замедлителей твердения — углеводов в смеси с электролитами.

Известно, что углеводы (как моно-, так и дисахариды) являются эффективными замедлителями твердения силикатных фаз цемента. Характер замедляющего влияния углеводов на твердение силикатных фаз цемента в основном зависит от количества добавки. Например, в наших исследованиях кинетики твердения C3S с добавками сахарозы и глюкозы увеличение дозировки с 0,2 до 0,5% от массы вяжущего приводит к сильнейшему замедлению процесса твердения.

Таким образом, используя углеводы в составе комплексных добавок в количестве до 0,5-0,7% на ранних этапах твердения, можно исключить участие силикатных фаз в формировании структурной прочности и оценить влияние добавок-электролитов на образование первичного алюминатного каркаса цементных композиций. В качестве замедлителя твердения была использована сахароза (дисахарид), поскольку в присутствии этой добавки происходит сильное замедление процессов гидратации силикатных фаз и в меньшей степени, по сравнению с моносахаридами (глюкозой, рамнозой, фруктозой и др.), проявляется ускоряющее действие в отношении алюминатных фаз.

О. В. ТАРАКАНОВ, д. т. н., профессор, декан

факультета «Управление территориями», Е. О. ТАРАКАНОВА, студентка. ПГУАС